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Statistical Aspects of Optical or MicroWave Measurements of Material Properties
Michael G. Block and Richard A. Albanese

Introduction.

Many materials of importance to military or industrial applications have dielectric
constants and conductivity values that are frequency dependent. These materials are
therefore called dispersive since the phase velocity of electromagnetic radiation within
the material is frequency dependent [1]. '

The direct problem of electromagnetic scattering involves being given the
dielectric constant and conductivity of a material as 4 function of frequency and inferring
from that data how an incident electromagnetic pulse or continuous wave propagates
within the material. An inverse problem of electromagnetic scattering involves being
given an incident and reflected electromagnetic pulse, or an adequate sequence of
incident and reflected continuous waves, and inferring from these data the frequency
dependent dielectric constant and conductivity of the material [2].

In the last ten to fifteen years there has been increased interest in the inverse
problem described above. The possibility exists of radiating a surface from a great
distance and receiving the reflected signal in return and from this pair inferring the
material that constitutes the surface. For example, bodies of water could be interrogated
to determine whether or not departures from certain standards of purity exist. An early
study of this problem by Krueger and Beezely [3] showed that the surface material could
indeed be determined from data on the incident and reflected pulse. However, these
workers observed that the measurement of material conductivity was extremely sensitive
to noise that is inevitable in real radiated or received signals. Using a different method,
Albanese, Penn and Medina also showed an extreme sensitivity of the material
conductivity estimate to noise [4].

We seek a deeper understanding of the effect of noise on the measurement of
material properties. We have found very few articles on the issue of measurement error
associated with optical systems or antenna apertures that might be used in the
measurement of material properties. This report is an initial study of apertures and errors
that may be associated with the use of apertures in the measurement of material
properties.

Aperture nulls when the experimentalist knows aperture diameter provide
estimates of the incoming frequency. Measuring diffraction pattern peaks provides
estimates of incoming intensity at that frequency. A material is determined, for example,
by its absorption of radiation at selected frequencies. Thus measurement of reflected




energy at given frequencies is important to material determination. In this report, we do
not discuss the entire process of material determination, rather, we focus on frequency or
wave length estimation.

Another use of this aperture study is toward an analysis of antennas that are
uniformly excited. In this case we are looking at the stability of the beam structure in the
face of fabrication errors.

Theory.

We consider the slit aperture treating the scalar case. We use Fraunhofer
diffraction theory and compute the far field pattern U (x,) as a function of the aperture
distribution U (x,) using the equation [5,6]

2
U(x)=———[_Ulx)e =" ax,

In the above equation j=+/—1, zis the distance from the aperture to the target plane,
Ais the wavelength of the radiation, x,is the distance across the aperture, and x,is
distance across the target plane.

If we consider first, uniform excitation across an aperture of length I, we can use
U (x,) = 1within the aperture. Doing this we find the following:
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We consider that the measured quantity in most experimental settings is the
electromagnetic intensity I(x,) given by [U(x,)|". That is, in many, if not most,
experiments that we are aware of phase information is lost. Thus,
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. The above equation provides the intensity diffraction pattern. This equatlon has
at least two interesting features.

First, notice that the distance to the first beam null is x, , given by
'xn.O _ /1

z 1
This equation says that the ratio of the effective illuminated area (x, ) to the distance to
the target (z) equals the ratio of the wavelength (A) to the aperture length (7). This is the
famous “A/1” constraint studied by Chu ‘and others [7] and is also known as the
diffraction limit. This distance to the first null will be the object of our primary
interest as it is a measure of incoming frequency and/or distance to the target. -

Second, notice that, in the equation for spot intensity, uncertainty in knowledge of
the wavelength, and uncertainty or inaccuracy with respect to measurement of range to
the target, enter into this equation multiplicatively, that is, as the product (4-z). If one

considers A and z as drawn from normal or Gaussian distributions, then the variance of
the product will generally greatly exceed the variance of either random variable.

The height of the central peak in the diffraction curve, when there is no noise in
the aperture, is

l?.
I(O)= -/1_2z_2—

We will study the impact of transmission imperfections in the aperture as they
relate to the far field pattern. To do this we will add low amplitude narrow band noise to
the aperture transmission function. That is, we consider

U(x)=1+n(x,)

In the above equation 7(x,)is a narrow band stochastic process whose argument is the
spatial variable x, that describes position within the aperture. We have used the Rice
representation 8] for the narrow band stochastic process 7(x,). That is, we use,

n(x,) = 2( a, cos®,x,+*b, sinw,x, )

n=1

In the above equation, as before, !is the size of the slit aperture under study. Bis the
bandwidth in spatial frequency (cycles per meter) of the noise process. The superscript

k refers to a given stochastic realization, and each *a,,*b,, pair are uncorrelated for every




n and m. Similarly, each “a,,*a, and *b,,*b, pair is uncorrelated for every n and m.
We have, following Bendat:

w, =27f,, fn=nAf=%, n=123,...

The coefficients “a, and *b, , with the correlation structure defined above, also have zero

means, and are considered drawn from normal (Gaussian) distributions with variances
that may be specific to the spatial frequency, namely:

(‘a2),, =("8}),, = o000

Now we will place the perturbed transmission function into the equation for
Fraunhofer diffraction.
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We simplify this last equation using Euler’s equation and previous results as
outlined below. -
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These expressions, derived from Euler’s equation, are inserted into the Fraunhofer
equation as follows,
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This last equation can be simplified to,
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This function contains three sinc terms (sinc(x) = x7'sin(x) ). In order to
consider the effect of noise in the transmission function on the location of the first null,
we, as a first step, analytically evaluate the location of the nulls for each of the sinc terms
taken separately. The first sinc term,
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has nulls when the sin term equals n7z. Thus there will be minimums when x, = Azn/1
for n=1,23,..... The first positive minimum of the first sinc term will therefore be
located at x, = Az /1.

The second sinc term,
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Previously we defined @, as
w, =27f,, f,=nAf =1;-, n=123,...
thus,
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This last expression tells us that the first nulls associated with the second sinc term are
not located at the same places as the first null for the first sinc term. In fact, these nulls
are twice as far from the origin of the axis system.

Similarly, for the third sinc terms the minimum will be located at,
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Thus, for the third sinc term, the first null is at the origin.

In summary, the three sinc terms have nulls at different places on the x-axis.
Thus, the first null of the complex intensity function U(x,) is influenced by the noise in
the transmission function U(x,) . This finding leads to a consideration of the expectation
of the intensity function I(x,). We will symbolize this expectation as E{I (x, )}.

To compute the intensity function we must start with the complex amplitude.
This is repeated below for reference.
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This complex amplitude can be represented simply as
Ux,)=M+n

In this expression, M is the complex amplitude that occurs in the absence of noise, and,
7 is a complex valued term dependent on the presence of noise.

We immediately obtain,
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In this last expression, |M Iz is the intensity profile I(x,) we have discussed above. The
term 2 Re( M77) has the form
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Immediately observe that this term, 2Re'(.Mﬁ), takes the value zero in expectation. That
is E{2Re(M7)}=0.

The term |7 simplifies to
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The value of |77|2 in expectation can be seen to depend solely on the variances of
the noise coefficients “a, and “b, since the cross-product terms will drop out.

To summarize our results concerning signal intensity and transmission noise, the
signal intensity in the presence of noise should be the sum of the deterministic intensity
profile I(x,) plus two stochastic terms. One of the stochastic terms converges with
larger sample size to zero, the second will grow with noise intensity in expectation. We
now turn to numerical experiments to examine these predictions.

Numerical Methods

In the theory section above, we have shown that the presence of a stochastic
transmission filter in the aperture leads to a perturbation of the intensity profile. This
perturbation is predicted to grow with the variance of the noise.




We also demonstrated in the theory section that the first null or minimum in the
intensity profile contains information about the frequency of the field penetrating the
aperture, and contains information about the aperture size. Our goal, as stated in the
introduction, is to understand the influence of noise on the measurement of the first null.

We have computed the intensity profile in the setting of noise by using the Rice
representation of transmission noise in the equation for the complex propagated
amplitude. We computed individual realizations of the intensity profiles and then
averaged across relatively large sample sizes (N=500). We have evaluated, in this way,
the impact of transmission noise on estimation of the first null.

Thus, prior to showing results of the study, we will discuss how we developed
transmission noise using the Rice representation, and we will discuss the technique we
have used to estimate the first null. This technique employs Legendre polynomials.

The Rice Representation

The Rice white noise is generated by multiplying sine and cosine waves by
independently distributed normal random variables. The sine and cosine waves in our
case represent spatial frequency not temporal frequency as more commonly encountered.
The equation we have used for the noise is

Bl
n(x)=7Y (‘a,cosw,x+b,sinw,x) .

n=1

In this equation for the Rice noise we have added a multiplication factor ¥ so that

the noise variance can be scaled. We do this because in presenting our results, we will
use variance as the independent variable.

We computed the variance of # in the following manner. The coefficients “a,

and *b, were drawn using a zero mean variance one random number generator embedded
in MATLAB version 5.3 (the command “randn”). The variance of 7 was computed by
averaging over one hundred draws of random coefficients and by averaging over one
thousand spatial points. Thus the variance we report applies across the entire aperture.
The bandwidth product B! used, which determines the number of spatial frequencies in
our Rice representation was initially taken as fifty. Various multiplication factors were
put in the Rice white noise generator subprogram (MATLAB version 5.3 and called
“var_det.m”). Results for different values of the multiplication factor y are tabulated in
tablel.




Multiplication Factor Variance
0.025 0.031
0.050 0.124
0.075 0.287
0.100 0.508
0.125 0.786
0.150 1.13

Table I. Within aperture variance as a function of
multiplication factor used before the Rice representation.
One hundred statistical realizations used and one thousand
spatial points sampled. Fifty spatial frequencies considered.

Variance as a function of the multiplication factor ¥ is plotted in Figure 1. The
resulting curve is not a straight line but is linearized by logarithmic transformation of
both variables. This linearization is shown in Figure 2 below. Linearization with a log-
log transformation indicates that the functional relationship is a power law. Fitting the
log-log transformed data provides

var o< y"

and n was found to be 2.0091614, as expected.
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Figure 1. A plot of the variance of the Rice representation
as a function of the multiplication factor y.
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Figure 2. A plot of the variance of the Rice representation
as a function of the multiplication factor ¥ with both factors

transformed using logarithms to the base ten.

This power law relationship has been tested to a maximum value of 0.8 for the
multiplication factor and has been noted to be correct well within numerical experiment
€e1Tor.

Legendre Polynomial Curve Fitting

A number of methods to determine the location of the maximum and minimum points of
the diffraction pattern were evaluated. The Legendre Polynomial method of curve fitting
seemed to be the most accurate method.

One of the advantages of the Legendre Polynomial method over the other methods was
that it gave the smoothest curve and truest fitting curve when the diffraction pattern was
noisy. In addition, through the use of recursive equations, the first derivative of the fitted
curve could be determined. By setting the first derivative to zero, the locations of the
maximum and minimums of the diffraction pattern could be analytically calculated.

The Legendre polynomial method has certain limitations. The first one is that with the
standard polynomial formula, the x-axis needs to be evaluated between negative one to
one. In our program, the axis is fitted to the actual data through change of variables on
the x-axis. Care must be used in determining the number of polynomial terms used. If
too few terms are used, the equation will not be flexible enough to obtain a good fit.
However too many terms will greatly increase computation time and could induce round
off errors. Seventy-five terms were used in our program. After the change of variable
was accomplished the x-axis was divided into 10000 segments. This resulted in
increased resolution.
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Another limitation with Legrendre polynomials is that diffraction curves containing too
many peaks and depressions are fitted accurately only after special attention. This
restriction can be overcome by either selecting an aperture and image domain value that
would minimize the number of peaks and valleys needing fitting, or by evaluating just the
center portion of the diffraction pattern. In our program the aperture size was 1 meter
and the image domain was limited to 50 meters.

We fitted Legendre polynomials to our simulation data using a technique described in G.
J. Borse’s book, “Numerical Methods with Matlab” [9]. The scheme behind this method
is described in the following.

The fundamental problem is to fit a function f(x) that is known at the points
X, X5, X5..... X to a finite sum of Legendre polynomials. That is we seek coefficients
a,i=123,.....N such that ‘

N
y=f(x)=Y ay . Btx)
k=0

The needed coefficients are found using the method of least squares. In this method a
sum of squares of deviations is formed and those coefficients that minimize this sum of
squares of deviations are determined using partial differentiation and solving the resulting
linear set of equations. In MATLAB this operation is done somewhat automatically
using the backslash command “\”. In the program to perform the least squares fit, one
creates the Vandermonde matrix and solves for the coefficients as shown below.

fix)  fx) - fia) foi(w)
M= hHx)  filx) - fiulx) filx)

fl(xN) fz(xzv) fn-l(xN) fn(xN)

a=M\y

Once the coefficients of the Legrendre polynomials are calculated, the locations of the
maximums and minimums in the data can be estimated.

The location of the maximums and minimums are computed by taking the first derivative
of the fitted curve. Taking the derivative of

y=f(x)= zaN-kﬂPk(x)

as a function of x is simplified through the use of known recursion relationships for
Legendre polynomials. Specifically '
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F(x)=0
B(x)=1
B, =(n+1)P(x)+ P (x)

The maximum and minimum locations were obtained by finding the points at which the
first derivative is equal to zero. We actually accomplished this in a two step process. We
obtained a first estimate of maxima and minima location by determining the locations
where the first derivative curve sign changed. These values were then entered into the
subroutine first_derv_L2 that calculated more accurately the location of the first
derivative zeros using the bisection method.

Results
Effect of Noise in the Aperture.

Various levels of white noise were added to the aperture. Variance at any given point
was used in order to characterize the level of noise in the aperture. The bandwidth for the
results in this section was taken as 50. -

During a run, the variance of the aperture transmission function was calculated as a check
on the prior observations and calibration shown in Figure 1. The mean variance was then
obtained as the mean of the individual variances in each of the five hundred runs at a
specific noise level. This mean variance is the independent variable (x-axis) in the
following graphs. The first minimum positions are graphed on the y-axis.

An interesting relationship is observed when comparing diffraction pattern null
(minimum) locations to the level of input variance. As seen in Figure #3, the mean first
minimum locations (that provide us our frequency or wavelength estimate) appear robust
to the presence of noise. There is only a slight outward movement of the null as variance
is increased. However our estimate of the null location degrades markedly with increased
transmission noise in the aperture as is seen by the increasing length of the bars on the
graphs which represent three times the standard deviation.

12




FIRST MINIMUM LOCATIONS vs.
VARIANCE
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Figure 3. A plot of the location of the ﬁrst minimum as a function of
variance.

Effect of Bandwidth on the Diffraction Pattern. .

The bandwidth of the input white noise defining the transmission screen also effects the
diffraction pattern. Examining the Rice representation one postulates that the
transmission screen variance would increase with bandwidth. In fact, a direct linear
relationship was found between bandwidth and variance. Spec1ﬁca11y, if y is the variance
and x is the bandwidth, we found

y = 0.000980 +0.0099098x
with the multiplication factor ¥ of 0.0995. The standard error of the fit was 0.008114
and the coefficient of determination (r%) was 0.9999979. The standard error of the fit is
defined as the standard deviation of the calibration points from the curve fit. Likewise r°
is defined as ‘
2= Sumof Squares Explained by Regression

Total Sumof Squares(Before Regression)

The multiplication factor of 0.0995 (number multiplying random number term to produce
the coefficient for the cosine and sine terms of the rice white noise) will produce a
variance in the input aperture of 0.498, when the bandwidth was 1:50 as can be seen in
Figure 1 where 50 spectral bands were used. When the bandwidth was reduced by a
factor of ten from 1:50 to 1:5, the variance of the input aperture was also reduced by a
factor of ten from 0.498 to 0.0498. This reduction is expected given the form of the
above shown regression equation.

For a relatively broad selection of bandwidths, transmission filter variance has been
shown to be a linear function of bandwidth. This relationship is shown in Figure #4.
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Bandwidth vs. Variance
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Figure 4. Direct linear relationship between bandwidth and variance.

-

As is seen in Figure #5, relatively large increases in bandwidth have a small effect on the
estimate of the position of the first diffraction pattern null. Interestingly, the variability
of that estimate is also effectively independent of bandwidth increases until a bandwidth
of 1000 is reached.

Bandwidth vs. First Minimum X-Axis
Location (Error Bars are STD)

0.3
0.28
0.26 X2 3 ? 2 *
0.24
0.22

Oc2 U 1
0 500 1000 1500

Bandwidth

X-Axis Location

Figure 5. The effect of bandwidth on the estimates of the x-axis location of
the first minimum. Bars show * three standard deviations.

Thus, at a fixed bandwidth increasing the transmission filter variance by increasing the

amplitude of the transmission filter slightly shifts the estimate of the first null while
increasing the variance of that estimate. On the other hand, increasing the bandwidth and

14




thereby increasing the filter variance has a lesser effect on the estimate of the first null.
We will seek to understand this finding more deeply in subsequent research.

Statistics Used in Results Evaluation

The program was run 500 times at each noise variance level. All variables were cleared
between each run. A method was needed to evaluate the validity of the estimated of the
first nulls or first minimum points. h

The first part of this method was to evaluate if the subprogram, which calculated thé Rice
white noise, was actually producing white noise of a specific bandwidth. A program
called test_rice accomplished this task. Using the Rice algorithm, white noise was first
generated and then evaluated to determine if it has amormal distribution and secondly its
fast Fourier transform (FFT) was taken to determine the extent of its bandwidth.

Since the white noise generated via the Rice algorithm has a normal distribution, it was
felt that the x axis location of the diffraction pattern nulls might not necessarily exhibit a
normal distribution. To determine if this was occurring, the mean, standard deviation,
skewness (third moment) and kurtosis (fourth moment) were calculated. The standard
deviation (o ), of course, determines the overall spread of the data. With normally
distributed data skewness (the third moment) is equal to zero. Finally, kurtosis evaluates
if the data is distributed either excessively flat (platykurtic) or excessively steep
(leptokurtic). If the data are distributed in terms of the normal distribution, the kurtosis
equals 3.0. If kurtosis is greater than 3.0 the distribution will have a peaked form.

The two graphs below show that for bandwidths up to 500, the 3™ and 4™ moments of the
null estimates are essentially invariant. The skewness and kurtosis are not zero, as would

occur were the distribution normal or Gaussian.

CONCLUSION

This report is an initial study of apertures and errors that may be associated with the use
of apertures in the measurement of material properties.

The setting for this article is a situation wherein scattered radiation is received from a
scene and one wishes to determine amplitudes at various frequencies. From these
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Bandwidth vs. 3rd Moment
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Figure 6. The effect of bandwidth on the skewness (3rd moment) of the
distribution of the first minimum estimates.

Bandwidth vs. 4th Moment
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Figure 7. The effect of bandwidth on the kurtosis (4™ moment) of the
distribution of the first minimum estimates.

amplitudes, and possibly phase data, material dielectric constant and conductivity can be
determined and the material identified. This work is thus pursued in the context of an

inverse problem.

We have used an aperture to diffract the returning signal for the purpose of frequency
estimation and we have used the first null in the diffraction pattern as an estimate (the

position of the first null is directly proportional to the wavelength).
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In performing this study we recognize that any aperture that might be used would be
imperfect and we represented these imperfections by applying band limited Gaussian
noise to the aperture transmission function.

We have found that the mean location of the diffraction pattern first minimum only
slightly increases with respect to increasing variance of the band limited noise in the
input aperture (bandwidth held constant). However the standard deviation of the first null
estimate increases dramatically as noise variance increases.

Holding bandwidth constant, we increased transmission filter noise variance by
increasing amplitude. As reported above, we found that the mean position of the first
null was left largely unchanged while the quality of the estimator degraded. We also
increased the variance of the transmission filter by increasing the noise bandwidth. In
this case, we found that the mean position of the first null remained relatively constant
over a broad band with an apparent slower degradation of null estimate quality.

In summary, estimating wavelength or frequency, using the first null of a diffraction
pattern, seems robust with respect to mean value in the presence of aperture noise.
Bandwidth and noise point-wise variance appear to have somewhat independent
influences on the quality of the estimate.

This use of the first diffraction null is not as sensitive to noise as were the measurements
reported in [3,4]. However, the measurements in these references, while being made in a
materials estimation setting, involved different variables. Specifically, in [4] the variable
of interest was the ratio of complex amplitudes. The work in this report illustrates that
measurements made in an inverse setting are not necessarily vulnerable to noise in the
device. -

The reader should note that the aperture study we have performed is applicable to
the situation of a uniformly excited antenna. The diffraction pattern we have analyzed is
that which would be produced by such a system. One can infer from our results that the
main beam of such an antenna would be robust to random errors in surface excitation.
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